Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
Front Bioeng Biotechnol ; 12: 1363803, 2024.
Article in English | MEDLINE | ID: mdl-38481571

ABSTRACT

Introduction: Daunorubicin and doxorubicin, two anthracycline polyketides produced by S. peucetius, are potent anticancer agents that are widely used in chemotherapy, despite severe side effects. Recent advances have highlighted the potential of producing improved derivatives with reduced side effects by incorporating l-rhodosamine, the N,N-dimethyl analogue of the native amino sugar moiety. Method: In this study, we aimed to produce N,N-dimethylated anthracyclines by engineering the doxorubicin biosynthetic pathway in the industrial Streptomyces peucetius strain G001. To achieve this, we introduced genes from the aclarubicin biosynthetic pathway encoding the sugar N-methyltransferases AclP and AknX2. Furthermore, the native gene for glycosyltransferase DnrS was replaced with genes encoding the aclarubicin glycosyltransferases AknS and AknT. Additionally, the gene for methylesterase RdmC from the rhodomycin biosynthetic pathway was introduced. Results: A new host was engineered successfully, whereby genes from the aclarubicin pathway were introduced and expressed. LC-MS/MS analysis of the engineered strains showed that dimethylated sugars were efficiently produced, and that these were incorporated ino the anthracycline biosynthetic pathway to produce the novel dimethylated anthracycline N,N-dimethyldaunorubicin. Further downstream tailoring steps catalysed by the cytochrome P450 monooxygenase DoxA exhibited limited efficacy with N,N-dimethylated substrates. This resulted in only low production levels of N,N-dimethyldaunorubicin and no N,N-dimethyldoxorubicin, most likely due to the low affinity of DoxA for dimethylated substrates. Discussion: S. peucetius G001 was engineered such as to produce N,N-dimethylated sugars, which were incorporated into the biosynthetic pathway. This allowed the successful production of N,N-dimethyldaunorubicin, an anticancer drug with reduced cytotoxicity. DoxA is the key enzyme that determines the efficiency of the biosynthesis of N,N-dimethylated anthracyclines, and engineering of this enzyme will be a major step forwards towards the efficient production of more N,N-dimethylated anthracyclines, including N,N-dimethyldoxorubicin. This study provides valuable insights into the biosynthesis of clinically relevant daunorubicin derivatives, highlighting the importance of combinatorial biosynthesis.

2.
Chembiochem ; 25(9): e202400111, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38476018

ABSTRACT

Chromatinized DNA is targeted by proteins and small molecules to regulate chromatin function. For example, anthracycline cancer drugs evict nucleosomes in a mechanism that is still poorly understood. We here developed a flexible method for specific isotope labeling of nucleosomal DNA enabling NMR studies of such nucleosome interactions. We describe the synthesis of segmental one-strand 13C-thymidine labeled 601-DNA, the assignment of the methyl signals, and demonstrate its use to observe site-specific binding to the nucleosome by aclarubicin, an anthracycline cancer drug that intercalates into the DNA minor grooves. Our results highlight intrinsic conformational heterogeneity in the 601 DNA sequence and show that aclarubicin binds an exposed AT-rich region near the DNA end. Overall, our data point to a model where the drug invades the nucleosome from the terminal ends inward, eventually resulting in histone eviction and nucleosome disruption.


Subject(s)
DNA , Isotope Labeling , Nucleosomes , Nucleosomes/metabolism , Nucleosomes/chemistry , DNA/chemistry , DNA/metabolism , Anthracyclines/chemistry , Anthracyclines/metabolism , Anthracyclines/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Aclarubicin/chemistry , Aclarubicin/pharmacology , Aclarubicin/metabolism , Nuclear Magnetic Resonance, Biomolecular
3.
iScience ; 27(2): 108884, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318352

ABSTRACT

Saliva is a complex bodily fluid composed of secretions by major and minor salivary glands. Salivary glands and their secretions are known to be unevenly distributed in the human oral cavity. Moreover, saliva flow rate and composition vary across locations and time of the day. This remarkable heterogeneity of salivary secretions suggests that different subtypes of saliva fulfill different functions. By coupling a non-invasive and facile collection method with comprehensive metabolomic profiling, we investigated the spatial and temporal distributions of salivary components. We identified location-specific metabolite profiles, novel oscillating metabolites, and location-specific diurnal patterns. In summary, our study paves the way for a deeper and more comprehensive understanding of the complex dynamics and functionalities of the salivary metabolome and its integration in multi-omics studies related to oral and systemic (patho-)physiology.

4.
iScience ; 27(3): 109139, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38384853

ABSTRACT

Cardiotoxicity remains a major cause of drug withdrawal, partially due to lacking predictability of animal models. Additionally, risk of cardiotoxicity following treatment of cancer patients is treatment limiting. It is unclear which patients will develop heart failure following therapy. Human pluripotent stem cell (hPSC)-derived cardiomyocytes present an unlimited cell source and may offer individualized solutions to this problem. We developed a platform to predict molecular and functional aspects of cardiotoxicity. Our platform can discriminate between the different cardiotoxic mechanisms of existing and novel anthracyclines Doxorubicin, Aclarubicin, and Amrubicin. Doxorubicin and Aclarubicin unlike Amrubicin substantially affected the transcriptome, mitochondrial membrane integrity, contractile force and transcription factor availability. Cardiomyocytes recovered fully within two or three weeks, corresponding to the intermittent clinical treatment regimen. Our system permits the study of hPSC-cardiomyocyte recovery and the effects of accumulated dose after multiple dosing, allowing individualized cardiotoxicity evaluation, which effects millions of cancer patients treated annually.

5.
J Immunol ; 212(3): 446-454, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38088808

ABSTRACT

MHC class I (MHC-I) molecules are critical for CD8+ T cell responses to viral infections and malignant cells, and tumors can downregulate MHC-I expression to promote immune evasion. In this study, using a genome-wide CRISPR screen on a human melanoma cell line, we identified the polycomb repressive complex 1 (PRC1) subunit PCGF1 and the deubiquitinating enzyme BAP1 as opposite regulators of MHC-I transcription. PCGF1 facilitates deposition of ubiquitin at H2AK119 at the MHC-I promoters to silence MHC-I, whereas BAP1 removes this modification to restore MHC-I expression. PCGF1 is widely expressed in tumors and its depletion increased MHC-I expression in multiple tumor lines, including MHC-Ilow tumors. In cells characterized by poor MHC-I expression, PRC1 and PRC2 act in parallel to impinge low transcription. However, PCGF1 depletion was sufficient to increase MHC-I expression and restore T cell-mediated killing of the tumor cells. Taken together, our data provide an additional layer of regulation of MHC-I expression in tumors: epigenetic silencing by PRC1 subunit PCGF1.


Subject(s)
Histones , Ubiquitin , Humans , Histones/metabolism , Ubiquitin/metabolism , Epigenesis, Genetic , Polycomb Repressive Complex 1/metabolism , Cell Line , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
6.
Brain Behav Immun ; 115: 588-599, 2024 01.
Article in English | MEDLINE | ID: mdl-37984623

ABSTRACT

BACKGROUND: Cancer survivors can experience long lasting fatigue resulting in a lower quality of life. How chemotherapy treatment contributes to this fatigue is poorly understood. Previously we have shown in a mouse model of cancer related fatigue that doxorubicin treatment induces fatigue-like symptoms related to disturbed circadian rhythms. However, the specific components of the circadian regulatory circuitry affected by doxorubicin treatment remained unclear. Therefore we investigated the role of the central circadian clock, the suprachiasmatic nucleus (SCN), in chemotherapy-induced fatigue. METHODS: We measured circadian controlled behavior and multiunit neuronal activity in the SCN in freely moving mice exhibiting fatigue-like behavior after doxorubicin treatment under both light-dark (LD) and constant dark (DD) conditions. Additionally, we assessed the expression of inflammation related genes in spleen and kidney as potential inducers of CRF. RESULTS: Doxorubicin treatment significantly reduced both the running wheel activity and time spent using the running wheel for over five weeks after treatment. In contrast to the pronounced effects on behavior and neuronal activity of doxorubicin on circadian rhythms, peripheral inflammation markers only showed minor differences, five weeks after the last treatment. Surprisingly, the circadian SCN neuronal activity under both LD and DD conditions was not affected. However, the circadian timing of neuronal activity in peri-SCN areas (the brain areas surrounding SCN) and circadian rest-activity behavior was strongly affected by doxorubicin, suggesting that the output of the SCN was altered. The reduced correlation between the SCN neuronal activity and behavioral activity after doxorubicin treatment, suggests that the information flow from the SCN to the periphery was disturbed. CONCLUSION: Our preclinical study suggests that chemotherapy-induced fatigue disrupts the circadian rhythms in peripheral brain areas and behavior downstream from the SCN, potentially leading to fatigue like symptoms. Our data suggest that peripheral inflammation responses are less important for the maintenance of fatigue. Chronotherapy that realigns circadian rhythms could represent a non-invasive way to improve patient outcomes following chemotherapy.


Subject(s)
Antineoplastic Agents , Circadian Clocks , Mice , Humans , Animals , Quality of Life , Circadian Rhythm/physiology , Inflammation , Doxorubicin , Antineoplastic Agents/adverse effects
7.
Cell Rep ; 42(12): 113516, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38048225

ABSTRACT

The immune checkpoint NKG2A/CD94 is a promising target for cancer immunotherapy, and its ligand major histocompatibility complex E (MHC-E) is frequently upregulated in cancer. NKG2A/CD94-mediated inhibition of lymphocytes depends on the presence of specific leader peptides in MHC-E, but when and where they are presented in situ is unknown. We apply a nanobody specific for the Qdm/Qa-1b complex, the NKG2A/CD94 ligand in mouse, and find that presentation of Qdm peptide depends on every member of the endoplasmic reticulum-resident peptide loading complex. With a turnover rate of 30 min, the Qdm peptide reflects antigen processing capacity in real time. Remarkably, Qdm/Qa-1b complexes require inflammatory signals for surface expression in situ, despite the broad presence of Qa-1b molecules in homeostasis. Furthermore, we identify LILRB1 as a functional inhibition receptor for MHC-E in steady state. These data provide a molecular understanding of NKG2A blockade in immunotherapy and assign MHC-E as a convergent ligand for multiple immune checkpoints.


Subject(s)
Histocompatibility Antigens Class I , Neoplasms , Mice , Animals , Histocompatibility Antigens Class I/metabolism , Leukocyte Immunoglobulin-like Receptor B1/metabolism , Killer Cells, Natural , Ligands , Peptides/metabolism , Neoplasms/metabolism , NK Cell Lectin-Like Receptor Subfamily C/metabolism
8.
Proc Natl Acad Sci U S A ; 120(50): e2315163120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38055744

ABSTRACT

Interferon-induced ubiquitin (Ub)-like modifier ISG15 covalently modifies host and viral proteins to restrict viral infections. Its function is counteracted by the canonical deISGylase USP18 or Ub-specific protease 18. Notwithstanding indications for the existence of other ISG15 cross-reactive proteases, these remain to be identified. Here, we identify deubiquitinase USP16 as an ISG15 cross-reactive protease by means of ISG15 activity-based profiling. Recombinant USP16 cleaved pro-ISG15 and ISG15 isopeptide-linked model substrates in vitro, as well as ISGylated substrates from cell lysates. Moreover, interferon-induced stimulation of ISGylation was increased by depletion of USP16. The USP16-dependent ISG15 interactome indicated that the deISGylating function of USP16 may regulate metabolic pathways. Targeted enzymes include malate dehydrogenase, cytoplasmic superoxide dismutase 1, fructose-bisphosphate aldolase A, and cytoplasmic glutamic-oxaloacetic transaminase 1. USP16 may thus contribute to the regulation of a subset of metabolism-related proteins during type-I interferon responses.


Subject(s)
Cytokines , Interferon Type I , Cytokines/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Peptide Hydrolases/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Deubiquitinating Enzymes
9.
Stem Cell Reports ; 18(9): 1793-1810, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37541258

ABSTRACT

CRB1 gene mutations can cause early- or late-onset retinitis pigmentosa, Leber congenital amaurosis, or maculopathy. Recapitulating human CRB1 phenotypes in animal models has proven challenging, necessitating the development of alternatives. We generated human induced pluripotent stem cell (iPSC)-derived retinal organoids of patients with retinitis pigmentosa caused by biallelic CRB1 mutations and evaluated them against autologous gene-corrected hiPSCs and hiPSCs from healthy individuals. Patient organoids show decreased levels of CRB1 and NOTCH1 expression at the retinal outer limiting membrane. Proximity ligation assays show that human CRB1 and NOTCH1 can interact via their extracellular domains. CRB1 patient organoids feature increased levels of WDFY1+ vesicles, fewer RAB11A+ recycling endosomes, decreased VPS35 retromer complex components, and more degradative endolysosomal compartments relative to isogenic control organoids. Taken together, our data demonstrate that patient-derived retinal organoids enable modeling of retinal degeneration and highlight the importance of CRB1 in early endosome maturation receptor recycling in the retina.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Degeneration , Retinitis Pigmentosa , Animals , Humans , Induced Pluripotent Stem Cells/metabolism , Retina/metabolism , Retinal Degeneration/genetics , Retinitis Pigmentosa/genetics , Mutation , Organoids/metabolism , Eye Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
10.
J Med Chem ; 66(16): 11390-11398, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37561481

ABSTRACT

The anthracycline anti-cancer drugs are intensely used in the clinic to treat a wide variety of cancers. They generate DNA double strand breaks, but recently the induction of chromatin damage was introduced as another major determinant of anti-cancer activity. The combination of these two events results in their reported side effects. While our knowledge on the structure-activity relationship of anthracyclines has improved, many structural variations remain poorly explored. Therefore, we here report on the preparation of a diverse set of anthracyclines with variations within the sugar moiety, amine alkylation pattern, saccharide chain and aglycone. We assessed the cytotoxicity in vitro in relevant human cancer cell lines, and the capacity to induce DNA- and chromatin damage. This coherent set of data allowed us to deduce a few guidelines on anthracycline design, as well as discover novel, highly potent anthracyclines that may be better tolerated by patients.


Subject(s)
Anthracyclines , Neoplasms , Humans , Anthracyclines/pharmacology , Anthracyclines/chemistry , Doxorubicin/pharmacology , Antibiotics, Antineoplastic/chemistry , Topoisomerase II Inhibitors , Chromatin , DNA/metabolism , Neoplasms/drug therapy
11.
ACS Chem Biol ; 18(9): 2003-2013, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37642399

ABSTRACT

Ubiquitin thioesterase OTUB2, a cysteine protease from the ovarian tumor (OTU) deubiquitinase superfamily, is often overexpressed during tumor progression and metastasis. Development of OTUB2 inhibitors is therefore believed to be therapeutically important, yet potent and selective small-molecule inhibitors targeting OTUB2 are scarce. Here, we describe the development of an improved OTUB2 inhibitor, LN5P45, comprising a chloroacethydrazide moiety that covalently reacts to the active-site cysteine residue. LN5P45 shows outstanding target engagement and proteome-wide selectivity in living cells. Importantly, LN5P45 as well as other OTUB2 inhibitors strongly induce monoubiquitination of OTUB2 on lysine 31. We present a route to future OTUB2-related therapeutics and have shown that the OTUB2 inhibitor developed in this study can help to uncover new aspects of the related biology and open new questions regarding the understanding of OTUB2 regulation at the post-translational modification level.


Subject(s)
Cysteine Proteases , Protein Processing, Post-Translational , Ubiquitination , Ubiquitin , Cysteine
12.
PLoS Biol ; 21(7): e3002182, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37410798

ABSTRACT

The viral hemagglutinins of conventional influenza A viruses (IAVs) bind to sialylated glycans on host cell surfaces for attachment and subsequent infection. In contrast, hemagglutinins of bat-derived IAVs target major histocompatibility complex class II (MHC-II) for cell entry. MHC-II proteins from various vertebrate species can facilitate infection with the bat IAV H18N11. Yet, it has been difficult to biochemically determine the H18:MHC-II binding. Here, we followed a different approach and generated MHC-II chimeras from the human leukocyte antigen DR (HLA-DR), which supports H18-mediated entry, and the nonclassical MHC-II molecule HLA-DM, which does not. In this context, viral entry was supported only by a chimera containing the HLA-DR α1, α2, and ß1 domains. Subsequent modeling of the H18:HLA-DR interaction identified the α2 domain as central for this interaction. Further mutational analyses revealed highly conserved amino acids within loop 4 (N149) and ß-sheet 6 (V190) of the α2 domain as critical for virus entry. This suggests that conserved residues in the α1, α2, and ß1 domains of MHC-II mediate H18-binding and virus propagation. The conservation of MHC-II amino acids, which are critical for H18N11 binding, may explain the broad species specificity of this virus.


Subject(s)
Chiroptera , Influenza A virus , Animals , Humans , Amino Acids , Histocompatibility Antigens Class II , HLA-DR Antigens/metabolism , HLA Antigens
13.
EMBO J ; 42(18): e111252, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37519262

ABSTRACT

Proteotoxic stress causes profound endoplasmic reticulum (ER) membrane remodeling into a perinuclear quality control compartment (ERQC) for the degradation of misfolded proteins. Subsequent return to homeostasis involves clearance of the ERQC by endolysosomes. However, the factors that control perinuclear ER integrity and dynamics remain unclear. Here, we identify vimentin intermediate filaments as perinuclear anchors for the ER and endolysosomes. We show that perinuclear vimentin filaments engage the ER-embedded RING finger protein 26 (RNF26) at the C-terminus of its RING domain. This restricts RNF26 to perinuclear ER subdomains and enables the corresponding spatial retention of endolysosomes through RNF26-mediated membrane contact sites (MCS). We find that both RNF26 and vimentin are required for the perinuclear coalescence of the ERQC and its juxtaposition with proteolytic compartments, which facilitates efficient recovery from ER stress via the Sec62-mediated ER-phagy pathway. Collectively, our findings reveal a scaffolding mechanism that underpins the spatiotemporal integration of organelles during cellular proteostasis.


Subject(s)
Intermediate Filaments , Proteotoxic Stress , Intermediate Filaments/metabolism , Vimentin/genetics , Vimentin/metabolism , Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Autophagy
15.
STAR Protoc ; 4(3): 102379, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37379220

ABSTRACT

Links between bacterial infections and cancer are actively investigated. Cost-effective assays to quantify bacterial oncogenic potential can shed new light on these links. Here, we present a soft agar colony formation assay to quantify mouse embryonic fibroblast transformation after Salmonella Typhimurium infection. We describe how to infect and seed cells in soft agar for anchorage-independent growth, a hallmark of cell transformation. We further detail automated cell colony enumeration. This protocol is adaptable to other bacteria or host cells. For complete details on the use and execution of this protocol, please refer to Van Elsland et al.1.


Subject(s)
Neoplasms , Salmonella Infections , Animals , Mice , Agar , Fibroblasts , Cell Transformation, Neoplastic
16.
Cancers (Basel) ; 15(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37190275

ABSTRACT

Glioblastoma (GBM) patients have one of the highest risks of venous thromboembolism (VTE), which is even further increased upon treatment with chemotherapy. Tissue factor (TF) is the initiator of the extrinsic coagulation pathway and expressed by GBM cells. In this study, we aimed to examine the effect of routinely used chemotherapeutic agents Temozolomide (TMZ) and Lomustine (LOM) on TF procoagulant activity and expression in GBM cells in vitro. Three human GBM cell lines (U-251, U-87, U-118) were exposed to 100 µM TMZ or 30 µM LOM for 72 h. TF procoagulant activity was assessed via an FXa generation assay and TF gene and protein expression through qPCR and Western blotting. The externalization of phosphatidylserine (PS) was studied using Annexin V flow cytometry. Treatment with TMZ and LOM resulted in increased procoagulant activity in all cell lines. Furthermore, both agents induced procoagulant activity in the supernatant and tumor-cell-secreted extracellular vesicles. In line, TF gene and protein expression were increased upon TMZ and LOM treatment. Additionally, PS externalization and induction of inflammatory-associated genes were observed. Overall, the chemotherapeutic modalities TMZ and LOM induced procoagulant activity and increased TF gene and protein expression in all GBM cell lines tested, which may contribute to the increased VTE risk observed in GBM patients undergoing chemotherapy.

17.
J Cell Sci ; 136(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36825571

ABSTRACT

The endolysosomal system comprises a dynamic constellation of vesicles working together to sense and interpret environmental cues and facilitate homeostasis. Integrating extracellular information with the internal affairs of the cell requires endosomes and lysosomes to be proficient in decision-making: fusion or fission; recycling or degradation; fast transport or contacts with other organelles. To effectively discriminate between these options, the endolysosomal system employs complex regulatory strategies that crucially rely on reversible post-translational modifications (PTMs) with ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. The cycle of conjugation, recognition and removal of different Ub- and Ubl-modified states informs cellular protein stability and behavior at spatial and temporal resolution and is thus well suited to finetune macromolecular complex assembly and function on endolysosomal membranes. Here, we discuss how ubiquitylation (also known as ubiquitination) and its biochemical relatives orchestrate endocytic traffic and designate cargo fate, influence membrane identity transitions and support formation of membrane contact sites (MCSs). Finally, we explore the opportunistic hijacking of Ub and Ubl modification cascades by intracellular bacteria that remodel host trafficking pathways to invade and prosper inside cells.


Subject(s)
Protein Processing, Post-Translational , Ubiquitin , Ubiquitin/metabolism , Ubiquitination , Endosomes/metabolism , Lysosomes/metabolism
18.
J Cell Sci ; 136(5)2023 03 01.
Article in English | MEDLINE | ID: mdl-36382597

ABSTRACT

The endosomal system orchestrates the transport of lipids, proteins and nutrients across the entire cell. Along their journey, endosomes mature, change shape via fusion and fission, and communicate with other organelles. This intriguing endosomal choreography, which includes bidirectional and stop-and-go motions, is coordinated by the microtubule-based motor proteins dynein and kinesin. These motors bridge various endosomal subtypes to the microtubule tracks thanks to their cargo-binding domain interacting with endosome-associated proteins, and their motor domain interacting with microtubules and associated proteins. Together, these interactions determine the mobility of different endosomal structures. In this Review, we provide a comprehensive overview of the factors regulating the different interactions to tune the fascinating dance of endosomes along microtubules.


Subject(s)
Dyneins , Kinesins , Dyneins/metabolism , Endosomes/metabolism , Microtubules/metabolism , Microtubule-Associated Proteins/metabolism
19.
Trends Cell Biol ; 33(1): 18-29, 2023 01.
Article in English | MEDLINE | ID: mdl-35778326

ABSTRACT

The nuclear envelope (NE) is central to the architecture of eukaryotic cells, both as a physical barrier separating the nucleus from the cytoplasm and as gatekeeper of selective transport between them. However, in open mitosis, the NE fragments to allow for spindle formation and segregation of chromosomes, resulting in intermixing of nuclear and cytoplasmic soluble fractions. Recent studies have shed new light on the mechanisms driving reinstatement of soluble proteome homeostasis following NE reformation in daughter cells. Here, we provide an overview of how mitotic cells confront this challenge to ensure continuity of basic cellular functions across generations and elaborate on the implications for the proteasome - a macromolecular machine that functions in both cytoplasmic and nuclear compartments.


Subject(s)
Cell Nucleus , Proteostasis , Humans , Cell Nucleus/metabolism , Mitosis , Cytoplasm/metabolism , Nuclear Envelope/genetics
20.
Elife ; 112022 12 07.
Article in English | MEDLINE | ID: mdl-36476511

ABSTRACT

Anthracyclines are among the most used and effective anticancer drugs. Their activity has been attributed to DNA double-strand breaks resulting from topoisomerase II poisoning and to eviction of histones from select sites in the genome. Here, we show that the extensively used anthracyclines Doxorubicin, Daunorubicin, and Epirubicin decrease the transcription of nuclear factor kappa B (NF-κB)-dependent gene targets, but not interferon-responsive genes in primary mouse (Mus musculus) macrophages. Using an NMR-based structural approach, we demonstrate that anthracyclines disturb the complexes formed between the NF-κB subunit RelA and its DNA-binding sites. The anthracycline variants Aclarubicin, Doxorubicinone, and the newly developed Dimethyl-doxorubicin, which share anticancer properties with the other anthracyclines but do not induce DNA damage, also suppressed inflammation, thus uncoupling DNA damage from the effects on inflammation. These findings have implications for anticancer therapy and for the development of novel anti-inflammatory drugs with limited side effects for life-threatening conditions such as sepsis.


Subject(s)
Anthracyclines , NF-kappa B , Animals , Mice , Anthracyclines/pharmacology , Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , DNA Damage , DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...